Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1355281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481473

RESUMEN

The individual and global burden of migraine is of such significance that there are accelerated efforts to develop new therapies. New migraine therapeutics are needed to address the current deficiencies that exist in the efficacy and adherence rate of approved anti-migraine medications. The recent discovery of the calcitonin gene related peptide as an add-on to the role of serotonin has markedly increased the range of new treatment options for acute and chronic migraine. Despite this, tackling the complexity of migraine disorders requires a complete understanding of its pathophysiology. Preclinical animal models can shed light on disease-related pathophysiology, including migraine. Indeed, the use of animal models has been instrumental in developing many therapeutics. However, an animal model is limited by the predictive and face validity of that model, and this extends to preclinical migraine models. In this review, a summary of the current understanding of the pathophysiology of migraine is given from both a preclinical and clinical perspective, and an emphasis is placed on the animal models of migraine. We will discuss the strengths and pitfalls of common preclinical migraine models as well as experimental research areas to explore further.

2.
ACS Pharmacol Transl Sci ; 7(3): 654-666, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38481688

RESUMEN

Opioids represent the most extensive category of abused substances in the United States, and the number of fatalities caused by these drugs exceeds those associated with all other drug overdoses combined. The administration of naltrexone, a potent pan-opioid receptor antagonist, to an individual dependent on opioids can trigger opioid withdrawal and induce severe side effects. There is a pressing demand for opioid antagonists free of opioid withdrawal effects. In our laboratory, we have identified a compound with affinity to mu, delta, and kappa opioid receptors in the range of 150-250 nM. This blood-brain barrier (BBB)-permeant compound was metabolically stable in vitro and in vivo. Our in vivo work demonstrated that 1-10 mg/kg intraperitoneal administration of our compound produces moderate efficacy in antagonizing morphine-induced antiallodynia effects in the chemotherapy-induced peripheral neuropathy (CIPN) model. The treatment was well-tolerated and did not cause behavioral changes. We have observed a fast elimination rate of this metabolically stable molecule. Furthermore, no organ toxicity was observed during the chronic administration of the compound over a 14-day period. Overall, we report a novel functional opioid antagonist holds promise for developing an opioid withdrawal therapeutic.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38414295

RESUMEN

This article describes the development of an institutional quality improvement review board (QIRB) as an effective and efficient method for reviewing and overseeing institutional quality improvement (QI) initiatives. QI projects involve the systematic collection and analysis of data and the implementation of interventions designed to improve the quality of clinical care and/or educational programs for a distinct population in a specific setting. QI projects are fundamentally distinct from human subjects research (HuSR); however, the differences between them are subtle and highly nuanced. Determining whether a project meets the definition of QI or qualifies as HuSR, thus requiring institutional review board (IRB) review, can be confusing and frustrating. Nevertheless, this distinction is highly consequential due to the heavy regulatory requirements involved in HuSR and IRB oversight. Making the correct determination of a project's regulatory status is essential before the project begins. Project leaders may not realize that their work meets the definition of HuSR and, therefore, might conduct the project without appropriate IRB review. Therefore, best practices dictate that project leaders should not decide which type of institutional review is appropriate for their projects. In addition, when QI project teams attempt to disseminate the results of their work, documentation of formal review and approval is generally required by peer-reviewed journals and professional organizations. However, institutional review mechanisms are rarely available. Projects that do not meet the definition of HuSR fall outside the purview of IRBs and most institutions do not have an alternative review body. This creates frustration for both project leaders and IRB administrators. Apart from IRB review, a separate process for reviewing QI projects offers several benefits. These include (1) relieving the burden on busy IRB staff; (2) promoting scholarly activity; (3) protecting the institution, project leaders, and participants from HuSR conducted outside of appropriate IRB review; and (4) promoting rigorous QI methods.

5.
Eur J Drug Metab Pharmacokinet ; 48(4): 427-435, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337087

RESUMEN

BACKGROUND AND OBJECTIVES: A wide variety of products containing cannabidiol (CBD) are available on the commercial market. One of the most common products, CBD oil, is administered to self-treat a variety of conditions. These oils are available as CBD isolate, broad-spectrum [all terpenes and minor cannabinoids except Δ-9-tetrahydrocannabinol (THC)], or full-spectrum (all terpenes and minor cannabinoids with THC < 0.3% dried weight) products. A systematic pharmacokinetic study was performed to determine whether there are differences in the pharmacokinetic parameters and systemic exposure of CBD after oral dosing as an isolate, broad-spectrum, or full-spectrum product. METHODS: Male and female Sprague Dawley rats were treated with a single, equivalent oral dose of CBD delivered as isolate, broad-spectrum, or full-spectrum product. An additional study using an in-house preparation of CBD isolate plus 0.2% THC was performed. A permeability assay was also conducted to investigate whether the presence of THC alters the intestinal permeability of CBD. RESULTS: There was an increase in the oral bioavailability of CBD (12% and 21% in male and female rats, respectively) when administered as a full-spectrum product compared with the isolate and broad-spectrum products. There was no difference in the bioavailability of CBD between the commercially available full-spectrum formulation (3.1% CBD; containing 0.2% THC plus terpenes and other minor cannabinoids) versus the in-house preparation of CBD full-spectrum (CBD isolate 3.2% plus 0.2% THC isolate). In vitro permeability assays demonstrated that the presence of THC increases permeability of CBD while also decreasing efflux through the gut wall. CONCLUSIONS: The presence of 0.2% THC increased the oral bioavailability of CBD in male and female rats, indicating that full-spectrum products may produce increased effectiveness of CBD due to a greater exposure available systemically.


Asunto(s)
Cannabidiol , Cannabinoides , Masculino , Femenino , Ratas , Animales , Dronabinol , Ratas Sprague-Dawley , Disponibilidad Biológica
6.
Pharmacol Rep ; 75(4): 937-950, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37243887

RESUMEN

BACKGROUND: For many chemotherapy patients peripheral neuropathy is a debilitating side effect. Mitragyna speciosa (kratom) contains the alkaloid mitragynine (MG), which produces analgesia in multiple preclinical pain models. In humans, anecdotal reports suggest cannabidiol (CBD) may enhance kratom-related analgesia. We examined the interactive activity of MG and CBD in a mouse chemotherapy-induced peripheral neuropathy (CIPN) model. We also examined MG + CBD in acute antinociception and schedule-controlled responding assays, as well as examined underlying receptor mechanisms. METHODS: Male and female C57BL/6J mice received a cycle of intraperitoneal (ip) paclitaxel injections (cumulative dose 32 mg/kg). The von Frey assay was utilized to assess CIPN allodynia. In paclitaxel-naïve mice, schedule-controlled responding for food was conducted under a fixed ratio (FR)-10, and hot plate antinociception was examined. RESULTS: MG dose-relatedly attenuated CIPN allodynia (ED50 102.96 mg/kg, ip), reduced schedule-controlled responding (ED50 46.04 mg/kg, ip), and produced antinociception (ED50 68.83 mg/kg, ip). CBD attenuated allodynia (ED50 85.14 mg/kg, ip) but did not decrease schedule-controlled responding or produce antinociception. Isobolographic analysis revealed 1:1, 3:1 MG + CBD mixture ratios additively attenuated CIPN allodynia. All combinations decreased schedule-controlled responding and produced antinociception. WAY-100635 (serotonin 5-HT1A receptor antagonist) pretreatment (0.01 mg/kg, ip) antagonized CBD anti-allodynia. Naltrexone (pan opioid receptor antagonist) pretreatment (0.032 mg/kg, ip) antagonized MG anti-allodynia and acute antinociception but produced no change in MG-induced decreased schedule-controlled behavior. Yohimbine (α2 receptor antagonist) pretreatment (3.2 mg/kg, ip) antagonized MG anti-allodynia and produced no change in MG-induced acute antinociception or decreased schedule-controlled behavior. CONCLUSIONS: Although more optimization is needed, these data suggest CBD combined with MG may be useful as a novel CIPN therapeutic.


Asunto(s)
Cannabidiol , Enfermedades del Sistema Nervioso Periférico , Ratones , Humanos , Masculino , Femenino , Animales , Paclitaxel/toxicidad , Cannabidiol/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico
7.
J Pharmacol Exp Ther ; 385(3): 180-192, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019472

RESUMEN

Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the µ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.


Asunto(s)
Citocromo P-450 CYP3A , Alcaloides de Triptamina Secologanina , Ratas , Animales , Cetoconazol/farmacología , Alcaloides de Triptamina Secologanina/metabolismo , Morfina/farmacología , Analgésicos Opioides/farmacología
8.
Adv Drug Alcohol Res ; 3: 11622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38389808

RESUMEN

Nicotine is the primary psychoactive component responsible for maintaining tobacco dependence in humans. Chronic pain is often a consequence of tobacco-related pathologies, and the development of a dual therapeutic that could treat chronic pain and tobacco dependence would be advantageous. Epibatidine reliably substitutes for nicotine in the drug discrimination assay, and is a potent analgesic, but has a side-effect profile that limits its therapeutic potential. Thus, considerable efforts to produce epibatidine derivatives are underway. Here we tested three epibatidine derivatives, 2'-fluoro-3'-(4-nitrophenyl)deschloroepibatidine (RTI-7527-102; i.e., RTI-102), 2'-fluorodeschloroepibatidine (RTI-7527-36; i.e., RTI-36), and 3'-(3″-dimethylaminophenyl)-epibatidine (RTI-7527-76; i.e., RTI-76) in both the rat nicotine drug discrimination assay as well as in the rat chronic constriction injury (CCI) of the sciatic nerve neuropathic pain model. Male and female Sprague-Dawley rats were trained on a fixed-ratio 10 schedule to discriminate nicotine (0.32 mg/kg base) from vehicle. All compounds dose-dependently substituted for nicotine, without significant decreases in response rates. In the discrimination assay the rank order potency was RTI-36 > nicotine > RTI-102 > RTI-76. Evidence suggests the α4ß2* subtype is particularly important to nicotine-related abuse potential. Thus, here we utilized the antagonist dihydro-ß-erythroidine (DHßE) to examine relative ß2 subunit contribution. DHßE (3.2 mg/kg, s.c.) antagonized the discriminative stimulus effects of nicotine. However, relative to antagonism of nicotine, DHßE produced less antagonism of RTI-102 and RTI-76 and greater antagonism of RTI-36. It is likely that at nicotinic receptor subunits RTI-102, RTI-76 and RTI-36 possess differing activity. To confirm that the full discriminative stimulus of these compounds was due to nAChR activity beyond the ß2 subunit, we examined these compounds in the presence of the non-selective nicotinic receptor antagonist mecamylamine. Mecamylamine (0.56 mg/kg, s.c.) pretreatment abolished nicotine-paired lever responding for all compounds. In a separate cohort, male and female Sprague-Dawley rats underwent CCI surgery and tested for CCI-induced mechanical allodynia via the von Frey assay. Each compound produced CCI-induced mechanical allodynia reversal. RTI-36 displayed higher potency than either RTI-102 or RTI-76. These novel epibatidine analogs may prove to be useful tools in the fight against nicotine dependence as well as novel neuropathic pain analgesics.

9.
J Pharmacol Exp Ther ; 383(3): 182-198, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153006

RESUMEN

The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Animales , Ratas , Agonistas de Receptores Adrenérgicos alfa 2 , Analgésicos Opioides/farmacología , Mitragyna/química , Naltrexona/farmacología , Receptores Adrenérgicos alfa 2 , Receptores Opioides mu/agonistas , Alcaloides de Triptamina Secologanina/farmacología , Yohimbina/farmacología
10.
Behav Pharmacol ; 33(6): 427-434, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35947069

RESUMEN

Baclofen and γ-hydroxybutyrate (GHB) exert γ-aminobutyric acid (GABA)B receptor agonism and have therapeutic utility but possess different pharmacological activities. We examined whether separate groups of mice could be trained to discriminate either baclofen or GHB, and the contribution of GABAB receptors to discriminative stimulus effects. Male C57BL/6J mice were trained to discriminate either baclofen (3.2 mg/kg, intraperitoneal) or GHB (178 mg/kg, intraperitoneal) from saline under a fixed-ratio 10 schedule. The GABAB antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP 35348) was used to pharmacologically assess GABAB receptor involvement. The selectivity of the resulting discriminations was assessed with the opioid agonist morphine and the benzodiazepine midazolam. In baclofen-trained mice, both baclofen and GHB were readily discriminated. Baclofen produced a maximum of 86% baclofen-appropriate responding. CGP 35348 (320 mg/kg, i.p.) produced a 4.7-fold rightward shift in the dose-effect function. GHB produced a maximum of 85.8% baclofen-appropriate responding. In GHB-trained mice, both GHB and baclofen were readily discriminated. In GHB-trained mice, GHB produced a maximum of 85.3% drug-appropriate responding; CGP 35348 (320 mg/kg, i.p.) produced a 1.8-fold rightward shift in the GHB discrimination dose-effect function. Baclofen produced up to 70.0% GHB-appropriate responding. CGP 35348 (320 mg/kg, i.p.) significantly antagonized baclofen discrimination and baclofen produced up to 37% GHB-appropriate responding up to doses that disrupted operant responding. Morphine did not produce substitution for either baclofen or GHB. Midazolam produced partial substitution for both. GHB and baclofen discrimination assays in mice provide a useful approach for examining different receptor types mediating the effects of these two drugs.


Asunto(s)
Oxibato de Sodio , Animales , Baclofeno/farmacología , Agonistas del GABA/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Midazolam/farmacología , Derivados de la Morfina , Receptores de GABA-B/fisiología , Oxibato de Sodio/farmacología
11.
AAPS J ; 24(5): 86, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854066

RESUMEN

Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Animales , Perros , Humanos , Macaca fascicularis , Ratones , Microsomas Hepáticos/metabolismo , Mitragyna/química , Mitragyna/metabolismo , Ratas , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides de Triptamina Secologanina/farmacología
12.
Front Pharmacol ; 13: 881810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529444

RESUMEN

Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.

13.
Adv Pharmacol ; 93: 35-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341571

RESUMEN

Kratom products have been historically and anecdotally used in south Asian countries for centuries to manage pain and opioid withdrawal. The use of kratom products has dramatically increased in the United States. More than 45 kratom alkaloids have been isolated, yet the overall pharmacology of the individual alkaloids is still not well characterized. The purpose of this chapter is to summarize in vitro and in vivo opioid activities of the primary kratom alkaloid mitragynine and its more potent metabolite 7-hydroxymitragynine. Following are experimental procedures described to characterize opioid receptor activity; receptor binding and functional assays, antinociceptive assays, operant conditioning assays, and respiratory plethysmography. The capacity of kratom alkaloids to confer tolerance and physical dependence as well as their pharmacokinetic properties are also summarized. The data reviewed here suggest that kratom products and mitragynine possess low efficacy agonist activity at the mu-opioid receptor in vivo. In addition, kratom products and mitragynine have been demonstrated to antagonize the effects of high efficacy mu-opioid agonists. The data further suggest that 7-hydroxymitragynine formed in vivo by metabolism of mitragynine may be minimally involved in the overall behavioral profile of mitragynine and kratom, whereas 7-hydroxymitragynine itself, at sufficiently high doses administered exogenously, shares many of the same abuse- and dependence-related behavioral effects associated with traditional opioid agonists. The apparent low efficacy of kratom products and mitragynine at mu-opioid receptors supports the development of these ligands as effective and potentially safe medications for opioid use disorder.


Asunto(s)
Mitragyna , Trastornos Relacionados con Sustancias , Analgésicos Opioides/farmacología , Humanos , Mitragyna/química
14.
Drug Metab Dispos ; 50(2): 158-167, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34759012

RESUMEN

Kratom (Mitragyna speciosa), a Southeast Asian tree, has been used for centuries in pain relief and mitigation of opium withdrawal symptoms. Mitragynine (MTG), the major kratom alkaloid, is being investigated for its potential to provide analgesia without the deleterious effects associated with typical opioids. Concerns have been raised regarding the active metabolite of MTG, 7-hydroxymitragynine (7HMG), which has higher affinity and efficacy at µ-opioid receptors than MTG. Here we investigated the hotplate antinociception, pharmacokinetics, and tissue distribution of MTG and 7HMG at equianalgesic oral doses in male and female C57BL/6 mice to determine the extent to which 7HMG metabolized from MTG accounts for the antinociceptive effects of MTG and investigate any sex differences. The mechanism of action was examined by performing studies with the opioid receptor antagonist naltrexone. A population pharmacokinetic/pharmacodynamic model was developed to predict the behavioral effects after administration of various doses of MTG and 7HMG. When administered alone, 7HMG was 2.8-fold more potent than MTG to produce antinociception. At equivalent effective doses of MTG and 7HMG, there was a marked difference in the maximum brain concentration of 7HMG achieved, i.e., 11-fold lower as a metabolite of MTG. The brain concentration of 7HMG observed 4 hours post administration, producing an analgesic effect <10%, was still 1.5-fold higher than the maximum concentration of 7HMG as a metabolite of MTG. These results provide strong evidence that 7HMG has a negligible role in the antinociceptive effects of MTG in mice. SIGNIFICANCE STATEMENT: Mitragynine (MTG) is being investigated for its potential to aid in pain relief, opioid withdrawal syndrome, and opioid use disorder. The active metabolite of MTG, 7-hydroxymitragynine (7HMG), has been shown to have abuse potential and has been implicated in the opioid-like analgesic effect after MTG administration. The results of this study suggest a lack of involvement of 7HMG in the antinociceptive effects of MTG in mice.


Asunto(s)
Alcaloides de Triptamina Secologanina , Analgésicos Opioides/farmacología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Alcaloides de Triptamina Secologanina/farmacología
15.
Psychopharmacology (Berl) ; 239(5): 1475-1486, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34846548

RESUMEN

Pain is one of the most common reasons to seek medical attention, and chronic pain is a worldwide epidemic. Anecdotal reports suggest cannabis may be an effective analgesic. As cannabis contains the terpenes α-terpineol, ß-caryophyllene, and γ-terpinene, we hypothesized these terpenes would produce analgesia in a mouse model of neuropathic pain. We used the chronic constriction injury of the sciatic nerve mouse model, which produces mechanical allodynia, assessed via the von Frey assay, as well as thermal hyperalgesia assessed via the hotplate assay. Compounds were further assessed in tests of locomotor activity, hypothermia, and acute antinociception. Each terpene produced dose-related reversal of mechanical allodynia and thermal hyperalgesia. Thermal hyperalgesia displayed higher sensitivity to the effects of each terpene than mechanical allodynia, and the rank order potency of the terpenes was α-terpineol > ß-caryophyllene > γ-terpinene. To examine the involvement of cannabinoid receptors, further tests were conducted in mice lacking either functional cannabinoid type 1 receptors (CB1R (-/-)) or cannabinoid type 2 receptors (CB2R (-/-)). Compared to wild type mice, CB1R (-/-) mice treated with α-terpineol displayed a 2.91-fold decrease in potency to reverse mechanical allodynia; in CB2R (-/-) mice, the potency of α-terpineol was decreased 11.73-fold. The potency of ß-caryophyllene to reverse mechanical allodynia decreased 1.80-fold in CB2R (-/-) mice. Each terpene produced a subset of effects in tests of locomotor activity, hypothermia, and acute antinociception. These findings suggest α-terpineol, ß-caryophyllene, and γ-terpinene may have differential cannabinoid receptor activity and a pharmacological profile that may yield new efficacious analgesics.


Asunto(s)
Cannabinoides , Hipotermia , Neuralgia , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Constricción , Monoterpenos Ciclohexánicos , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Ratones , Neuralgia/tratamiento farmacológico , Sesquiterpenos Policíclicos , Receptores de Cannabinoides , Terpenos/farmacología , Terpenos/uso terapéutico
16.
Structure ; 30(3): 329-337.e5, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34895472

RESUMEN

A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.


Asunto(s)
Simulación de Dinámica Molecular , Receptor de Adenosina A2A , Humanos , Conformación Molecular , Receptor de Adenosina A2A/química
17.
J Med Chem ; 64(18): 13510-13523, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34467758

RESUMEN

Kratom alkaloids have mostly been evaluated for their opioid activity but less at other targets that could contribute to their physiological effects. Here, we investigated the in vitro and in vivo activity of kratom alkaloids at serotonin receptors (5-HTRs). Paynantheine and speciogynine exhibited high affinity for 5-HT1ARs and 5-HT2BRs, unlike the principal kratom alkaloid mitragynine. Both alkaloids produced antinociceptive properties in rats via an opioid receptor-independent mechanism, and neither activated 5-HT2BRs in vitro. Paynantheine, speciogynine, and mitragynine induced lower lip retraction and antinociception in rats, effects blocked by a selective 5-HT1AR antagonist. In vitro functional assays revealed that the in vivo 5-HT1AR agonistic effects may be due to the metabolites 9-O-desmethylspeciogynine and 9-O-desmethylpaynantheine and not the parent compounds. Both metabolites did not activate 5-HT2BR, suggesting low inherent risk of causing valvulopathy. The 5-HT1AR agonism by kratom alkaloids may contribute to the mood-enhancing effects associated with kratom use.


Asunto(s)
Analgésicos/uso terapéutico , Dolor Nociceptivo/tratamiento farmacológico , Receptores de Serotonina/metabolismo , Alcaloides de Triptamina Secologanina/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Masculino , Dolor Nociceptivo/metabolismo , Ratas Sprague-Dawley
19.
J Pharmacol Toxicol Methods ; 111: 107101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34242797

RESUMEN

INTRODUCTION: Whole-body plethysmography (WBP) in unrestrained, non-anesthetized rodents is a preclinical method to assess the respiratory depressant effects of opioids, the leading cause of opioid overdose death in humans. However, low baseline respiration rates under normocapnic conditions (i.e., "floor" effect) can render the measurement of respiratory decreases challenging. We assessed hypercapnia-induced increases in respiration as a strategy to assess opioid-induced decreases in respiration in rats. METHODS: WBP was used to assess respiration frequency, tidal volume and minute volume in the presence of normocapnic and hypercapnic (8% CO2) conditions in rats during the rat diurnal period of the light cycle. The mu-opioid receptor agonist fentanyl was administered intravenously, and the hot plate test was used to assess acute antinociception. RESULTS AND DISCUSSION: Hypercapnia-induced increases in respiratory parameters (frequency, minute volume, and tidal volume) were decreased by fentanyl at doses that did not decrease the same parameters under the normocapnic conditions. These findings show that hypercapnia increases sensitivity to respiratory depressant effects of fentanyl, as compared with assessments during the rat diurnal period when activity and breathing rate are generally low, i.e., there is a floor effect. The current approach is highly sensitive to opioid-induced respiratory depression, and therefore provides a useful method for assessment in a pre-clinical setting.


Asunto(s)
Analgésicos Opioides , Insuficiencia Respiratoria , Analgésicos Opioides/toxicidad , Animales , Fentanilo/toxicidad , Hipercapnia , Ratas , Insuficiencia Respiratoria/inducido químicamente , Volumen de Ventilación Pulmonar
20.
J Med Chem ; 64(10): 6523-6548, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33956427

RESUMEN

Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.


Asunto(s)
Analgésicos/química , Descubrimiento de Drogas , Receptores Opioides/química , Agonistas Adrenérgicos/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Humanos , Dolor/tratamiento farmacológico , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Transducción de Señal/efectos de los fármacos , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...